
Supplemental Information for “Hard Data on Soft Errors: A
Large-Scale Assessment of Real-World Error Rates in GPGPU”

Imran S. Haque1

Vijay S. Pande1,2

Stanford University, Departments of 1Computer Science and 2Chemistry

December 4, 2009

1 Design and Validation of
MemtestG80

1.1 Offload and Parallelization Scheme

Several design parameters affect the sensitivity and
speed of a software-based GPU memory tester. Specif-
ically, the three components of the memory tester —
pattern generation, memory access (writing and read-
ing patterns to/from memory), and pattern verification
— can be performed either by the CPU or the GPU it-
self; and if performed on the GPU, can be performed
either serially or in parallel across the multiple GPU
cores. The decisions made in MemtestG80 are informed
both by the assumptions we make about the relative er-
ror rates of various system components and by respon-
siveness requirements dictated by operation on donated
distributed-computing resources.

To improve the speed and responsiveness of the mem-
ory tester, all pattern generation, memory access, and
verification is done in parallel on the GPU. We assume
that the memory error rate is sufficiently low that the
on-GPU code (which occupies a much smaller footprint
than the tested region) will not be corrupted during
the test execution. Performing verification on the GPU
leaves the tester vulnerable to GPU logic errors. We
therefore implicitly assume that the GPU logic error rate
is lower than the GPU memory error rate; however, we
verify this assumption by also running a custom logic
test that should report errors on architectural paths sim-
ilar to those used in other parts of the tester.

1.2 Tests implemented in MemtestG80

• Moving inversions (ones and zeros) (MI10) —
Writes constant pattern of all zeros (0x0) or ones
(0xFFFFFFFF) to all words in memory. Verifies all
words.

• Moving inversions (random) (MIR) — Writes host-
provided random word to all words in memory.
Verifies all words.

• Memtest86 variant of walking 8-bit (1-byte) pattern
(1WM) — Writes Memtest86 variant of walking 8-
bit pattern to memory at each of 8 possible bit-shift-
rotations. Verifies all words. Also tests complement
of given pattern.

• True walking 8-bit (1-byte) pattern (zeros/ones)
(1W0, 1W1) — Writes true walking-zeros or -ones
pattern to memory with 8-bit width, at all 8 shifts.
Verifies all words.

• True walking 32-bit (4-byte) pattern (zeros/ones)
(4W0, 4W1) — As 1W0 and 1W1, but with 32-bit
width and all 32 possible shifts.

• Random blocks (RB) — Generates and writes a dif-
ferent pseudorandom word to each word in mem-
ory. Verifies all words. Pseudorandom num-
bers generated using an on-GPU multi-core, multi-
threaded leapfrogged Park-Miller Minimal Stan-
dard pseudorandom number generator [2].

• Modulo-20 (M20) — The modulo-20 test proceeds
in 20 rounds. In round i, a 32-bit pattern is writ-
ten to each memory location whose offset from the
start of tested memory is equal to i modulo 20;
the bitwise complement of the pattern is then writ-
ten twice to every other memory location. Subse-
quently, the offsets equal to i modulo 20 are read
back and verified.

• Logic test, one or four iterations through LCG cycle
(L, L4) — Logic test, described in following section.
LCG state kept in registers.

• Logic test in shared memory, one or four itera-
tions through LCG cycle (LS, LS4) — Logic test,
described in following section. LCG state kept in
shared memory.

1.3 Logic Testing

Because results from the GPU can be passed back to
the host CPU only by a copy from the GPU main mem-
ory, detection of GPU logic errors under the assumption
that memory errors are more frequent than logic errors
is nontrivial — an error in a computed result may be
caused by an error in logic or memory. To overcome
this problem, a test can be designed which produces the
same expected result after varying amounts of logic op-
erations. The same test can be run twice with (for ex-
ample) four times the number of logic operations in the
second execution. Since both tests write the same data
to memory, the expected rate of errors due to memory
faults will be equal between the two executions; since
the latter test runs more logic operations, errors from
logic faults should scale with the number of operations.

The design of our logic test, unique to MemtestG80, is
based on the preceding principle. For the core calcula-
tion, we use a linear congruential random number gen-
erator (LCG) with a short period k starting from zero.
Such a generator, when started from zero, will return
to zero after a fixed number of iterations k. Because the
generator only reaches k states, of 232 possible (in the 32-
bit generator), assuming a uniform probability of error
over bits, most logic errors will cause the generator to
transition to a state outside the normal operation cycle.
Such a state is unlikely to return to zero in the correct
number of steps, and therefore whether the generator
returns to zero is a good indication of whether a logic
error occurred. Our logic test starts the generator from
zero and runs it for k or 4k cycles, each time writing
the results out to memory, reading it back, and verifying

1

0.0 0.2 0.4 0.6 0.8 1.0
Iteration cutoff 1e7

0

1

2

3

4

5
Lo

g
1
0
(N

u
m

b
e
r

o
f

ca
rd

s)
Number of cards sampled with #iters > cutoff

All cards
Overclocked shaders
Stock frequencies
Indeterminate overclocking

Supplementary Figure 2: Number of cards tested as a
function of minimum number of iterations completed.
Breakdowns by overclocking status.

that it contains only zeros. Any nonzero values indicate
either the presence of a logic or a memory error. Scal-
ing of the number of nonzero values with the number of
LCG iterations indicates logic, rather than memory, er-
rors. The use of constant zero as the test pattern further
increases the sensitivity of the test to logic rather than
memory errors; as we show in Section ??, the constant
zero pattern is insensitive to faulty memory.

1.4 Validation

Supplementary Figure 1 shows word-error-rate in 20 it-
erations of MemtestG80 as a function of memory clock
frequency (normal memory clock rate = 400 MHz).

2 Methodology

Supplementary Table 1 shows a breakdown of cards that
completed at least 300,000 iterations of MemtestG80 on
Folding@home, separated by card family.

Supplementary Figure 2 plots the distribution of the
number of cards we tested, as a function of the mini-
mum number of iterations each card completed. It also
plots the same trace broken down into cards which were
(logic) overclocked, at or below rated frequencies, or
had an unknown overclocking status.

3 Analysis

3.1 Hypothesis testing by information gain

To test our hypotheses we apply the information-
theoretic measure known as information gain, which is

Card Family # cards ≥ 300,000 iter.
Consumer graphics cards 17648 total

GeForce GTX 5520
GeForce 8800 5478

GeForce 9800/GTS 4923
GeForce 9600 1516

Other Desktop GeForce 181
Mobile GeForce 30

Professional graphics cards 89 total
Quadro FX 83

Quadroplex 2200 6
Dedicated GPGPU cards 37 total

Tesla T10 27
Tesla C1060 10

Supplementary Table 1: Distribution of cards tested on
FAH that ran at least 300,000 test iterations

broadly used in data mining as a heuristic criterion for
building decision tree models of data [3]. The hypoth-
esis testing problem is formulated as follows: given a
labeled dataset D, we partition D according to an indi-
cator variable V into multiple subsets D1, D2, · · · , D|V |.
We would like to know how good V is at explaining the
variability in D.

We measure the “variability” of D and each of its sub-
sets by their respective Shannon entropies, H(D), de-
fined as

H(D) = −
∑
x∈D

p(x) log2 (p(x))

The information gain on D from V , I(D;V) (also known
as the mutual information between D and V), is defined
as:

I(D;V) = H(D) − H(D|V)

I(D;V) = H(D) −
∑
v∈V

H(Dv)P (V = v)

If I(D;V) is large compared to H(D), then V explains
a significant portion of the distribution of D.

To estimate probability distributions D in our hypoth-
esis testing, we histogrammed failure probabilities on a
per-card basis as was done for each distribution in Fig-
ure ??, but across the entire range of probabilities from
0 to 1. Although this resolution is too high for the low
number of counts at higher probabilities, most of these
bins will be zero-valued and will not affect the entropy
calculations.

3.2 Card identification

For analyses requiring identification of individual
card models (the overclocking, architecture, and con-
sumer/professional board splits), we excluded any
Folding@home client IDs which corresponded to more

2

400 420 440 460 480 500 520 540
RAM Clock (MHz)

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

W
o
rd

 e
rr

o
r

ra
te

Memtest86 Modulo-20

400 420 440 460 480 500 520 540
RAM Clock (MHz)

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

W
o
rd

 e
rr

o
r

ra
te

Memtest86 Walking 8-bit

400 420 440 460 480 500 520 540
RAM Clock (MHz)

10
-11

10
-10

10
-9

10
-8

10
-7

W
o
rd

 e
rr

o
r

ra
te

Memtest86 Walking ones (32-bit)

400 420 440 460 480 500 520 540
RAM Clock (MHz)

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

W
o
rd

 e
rr

o
r

ra
te

Memtest86 Walking zeros (32-bit)

400 420 440 460 480 500 520 540
RAM Clock (MHz)

0.06

0.04

0.02

0.00

0.02

0.04

0.06

W
o
rd

 e
rr

o
r

ra
te

Moving Inversions (ones/zeros, random)

400 420 440 460 480 500 520 540
RAM Clock (MHz)

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

W
o
rd

 e
rr

o
r

ra
te

Random blocks

400 420 440 460 480 500 520 540
RAM Clock (MHz)

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

W
o
rd

 e
rr

o
r

ra
te

True Walking ones (8-bit)

400 420 440 460 480 500 520 540
RAM Clock (MHz)

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

W
o
rd

 e
rr

o
r

ra
te

True Walking zeros (8-bit)

Supplementary Figure 1: Positive control: word error rate versus frequency on sample of MemtestG80 tests.
Dashed lines represent zero errors found.

3

than one returned board name in our dataset. This
was done to reduce the probability that multiple boards
were conflated into one. For some work units, no board
name was returned. Client IDs with missing data were
also excluded, as it was impossible to identify what kind
of board ran that test.

There was one exception to the above procedure - if
a client ID mapped only to either a “Tesla C1060” or a
“Tesla T10 Processor” on different work units, we did
not exclude that client ID, as these are likely to be the
same board, possibly with a revised driver.

3.3 Failure modes of tests

By examining the mutual information between the re-
sults of each individual test comprising a MemtestG80
iteration, it is possible to better understand the mecha-
nisms triggering failures under various conditions. For
each test, we construct a list in which each element cor-
responds to a single execution of MemtestG80, and the
value of each element is the number of failures on that
test for that execution. Corresponding elements in each
vector map to the same MemtestG80 execution. Each
list of failure counts was then histogrammed into 10
bins and normalized to build an empirical probability
mass function for the number of failures in that test on
a given execution of MemtestG80. Using these proba-
bility distributions for tests X and Y we calculated the
entropies H(X) and H(Y) according to the formulas in
Supplementary Section 3.1; in this case we use an alter-
native (equivalent) formulation for the mutual informa-
tion I(X;Y):

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)
p(x)p(y)

The entropy H(X) can be interpreted as the uncer-
tainty in X , as measured by the number of bits required
by an optimal code to specify a value from the distri-
bution pX(x). The mutual information I(X;Y) can be
interpreted as the reduction in uncertainty in X caused
by knowledge of the value of Y , or vice versa (mutual
information is symmetric) [1]. Supplementary Figure 3
shows the ratio of I(X;Y) to H(X) for all tests X and
Y used in MemtestG80; this ratio is the fraction of the
uncertainty in X explained by knowledge of Y . In Sup-
plementary Figure 3, the Y (the “explaining” distribu-
tions) are along the rows; the X (the “explained” distri-
butions) are along the columns. We use the codes de-
fined in Supplementary Section 1.2.

Several interesting trends emerge from this data:

1. The Modulo-20 test stands on its own
Both the M20 column and the M20 row have small
values across their lengths, indicating the Modulo-
20 test covaried strongly with no other test. This is

likely due to the Modulo-20 test’s increased sensi-
tivity relative to other tests and reinforces the no-
tion that it probes a different failure mechanism
than do other tests.

2. The Random Blocks test is a good logic test
Although it was not intended as a logic test, the
large values in the RB row for the columns corre-
sponding to the LCG-based logic tests indicate that
RB does a good job of capturing the errors mea-
sured by the LCG tests. Conversely, the small val-
ues in the RB column for the LCG tests demonstrate
that RB is measuring a superset of errors relative
to the LCG tests. This result is reasonable in retro-
spect: the RB test is very shader-logic intensive. We
have designed it around a multithreaded, multi-
core Park-Miller Minimal Standard pseudorandom
number generator [2], which in the course of gener-
ating a new random number for each memory loca-
tion performs many more logic operations than any
other MemtestG80 test.

3. The logic tests measure a distinct failure mode
from most memory tests
The four-iteration variants of the logic test (L4 and
LS4) are poorly explained by most memory tests,
and in particular, are less-well-explained by the
memory tests than are their one-iteration counter-
parts (L and LS). This is to be expected, as the one-
iteration variants are more influenced by memory
errors. However, the bright block in the bottom-
right of the mutual information plot shows that the
logic tests covary strongly among themselves. Fur-
thermore, memory tests have higher mutual infor-
mation to the L4 test than the LS4 test, indicating
that the use of shared memory in the logic test is
a significant variable. Together, these results show
that the logic tests detect a failure mode distinct
from that tested in the memory tests, and that ap-
parent logic errors can be triggered by soft errors in
the on-GPU shared memory.

References

[1] T. M. Cover and J. A. Thomas. Elements of Information
Theory, 2nd Edition. Wiley-Interscience, July 2006.

[2] S. K. Park and K. W. Miller. Random number gen-
erators: good ones are hard to find. Commun. ACM,
31(10):1192–1201, October 1988.

[3] I. H. Witten and E. Frank. Data Mining: Practical Ma-
chine Learning Tools and Techniques, 2nd Edition. Mor-
gan Kaufmann, June 2005.

4

MI10 MIR 1WM 1W0 1W1 4W0 4W1 RB M20 L L4 LS LS4
Explained

MI10

MIR

1WM

1W0

1W1

4W0

4W1

RB

M20

L

L4

LS

LS4

E
x
p
la

in
e
r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
u
tu

a
l-

in
fo

rm
a
ti

o
n
-t

o
-e

n
tr

o
p
y
 r

a
ti

o

Supplementary Figure 3: Mutual information-to-entropy ratios for each test pair. Each entry is the fraction of the
entropy of the test in that column explained by the test in that row. Brighter squares indicate that more of the
variance of the explained test is explained by the explainer test. Test codes defined in Section 3.3.

5

